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Figure 3.2  Saint Vertigo Version 6.0. Aircraft consists of four decks. The A-deck
contains custom built collective pitch rotor head mechanics. Up un-
til version 7.0, all versions are equipped with a stabilizer bar. This
device provides lagged attitude rate feedback for controllability. The
B-deck comprises the fuselage which houses the power-plant, transmis-
sion, actuators, gyroscope, and the tail rotor. The C-deck is the au-
topilot compartment which contains the inertial measurement unit, all
communication systems, and all sensors. The D-deck carries the navi-
gation computer which is attached to a digital video camera visible at
the front. The undercarriage is custom designed to handle automated
landings, and protect the fuel cells at the bottom. . . . . . . ... ... 114

Figure 3.3  Saint Vertigo, after her last flight before the transfer to Office of Naval
Research, taken for a news article. . . . . . .. .. ... ... .. .... 115

Figure 3.4  Long hours of wind-tunnel testing had to be performed on Saint Vertigo
to determine the optimal rotorhead and powerplant combinations. After
experimenting with several different rotor designs, phasing angles, and
multi-blade systems, wind-tunnel data gathered during the conception
stage indicated the optimal lift ratio is achieved with two blades and
even then aircraft flies with heavy wing loading. Propulsive efficiency
is poor at this scale airfoils because our atmosphere does not scale with
the aircraft. Induced drag from increasing the number of blades did not

bring justifiable gains in flight performance, so two bladed design was
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Figure 3.5  Torsional pendulum tests of Saint Vertigo V2.0 to determine moments
of inertia around the fuselage around center of gravity. Blades rotate
clockwise, in contrast to most full-size helicopters. The direction does
not have an effect on aircraft performance. Clockwise rotation was se-
lected because counter-clockwise one-way bearings at this small scale
were not available at the time, and cost of manufacturing one did not
justify the gains. . . . . . .. Lo 118
Figure 3.6  Forces and moments acting on Saint Vertigo during flight. F is fuselage
drag. Fyr and Trgr are drag due to spinning tail rotor disc, and tail
rotor torque, respectively. Tysg is lift due to main rotor. [ angles
represent the deflection of fuselage due to main rotor moments. Center
of gravity is indicated with the universal CG symbol. Aircraft is shown
here with the payload removed. . . . . . .. .. ... 118
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servation of energy in fluid flow, where blade tips operate at a Reynolds
number in the range of 1 to 2 million. While it is possible to have a heli-
copter with flat plate wings, curvature improves efficiency significantly;
a design feature influenced by the observation of bird wings. Thicker is

better, at least up to a thickness of about 12% . . . . . .. ... . ... 122
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Figure 3.10 This simulation shows stagnation pressure regions, low pressure regions,
surface pressure distribution, boundary layer, separation, vortices, and
reverse flow, in Saint Vertigo. Top left, flow attaches most of the sur-
face with a thin, small wake. This is typical during aircraft startup,
and rarely encountered in flight. Top right, Saint Vertigo near maxi-
mum efficiency where flow is mostly attached, with small wake region.

If at all possible this is the angle of attack to maintain for optimal
flight performance. Bottom right, this is when Saint Vertigo is at
near stall. Flow is attached at front half, separating at mid chord and
creating vortices, with significant wake region, resulting in substantial
pressure drag. This situation occurs when the aircraft is heavily loaded,
or climbing too fast, the effect can be heard during the flight as a deep
whooshing sound from the blades. It is a warning sign to either reduce
the payload or reduce the control rates. Bottom right, Saint Vertigo
stalling. Flow separated on the airfoil with large wake and reverse flow.
This condition should be avoided at all costs, as it will result in very
rapid loss of altitude. . . . . . . .. ... ... L L 122
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flight. . . . . . . 123

Figure 3.12 Retreating blade stall simulation illustrated on the CAD model of Saint
Vertigo; this effect occurs during high speed forward flight due to re-
treating blade escaping from wind. Note the laminar flow on advancing
blade, and compare to flow separation on retreating blade. Flapping
remedies this problem; Saint Vertigo uses three types of flapping, at the
hub by means of rubber grommets, and at the stabilizer bar, and at the
autopilot. . . . ..o 126

Figure 3.13 An earlier version of Saint Vertigo with stainless steel construction,
shown before the control systems design equipment used to model the

aircraft. . . . .o L 127
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Figure 3.14 Saint Vertigo wake due to main rotor during different flight conditions,
hover, low hover, and full forward flight. This wake also renders a
barometric altimeter unreliable in this scale aircraft, for that reason
Saint Vertigo uses air-coupled ultrasonic proximity altimeter. . . . . . 128

Figure 3.15 Saint Vertigo, outdoor missions. . . . . . . .. ... ... ... ... .. 129

Figure 3.16 Airborne Riverine Mapping performed by Saint Vertigo, photo cour-
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Figure 3.19 Swashplate mechanics of Saint Vertigo, shown next to the CAD model
that was used to design the aircraft. The swashplate mechanically alters
the pitch of a rotor blade, independent from other rotor blade(s) in the
main rotor, in the opposite direction of control input. That is to say
to move forward, Saint Vertigo first needs to pitch forward, therefore
increase ¢, which increases the angle of incidence of the rotor blade
flying through the aft section of the helicopter with a 90 degree phase
angle. Under normal flight conditions that action increases angle of
attack, causes the aircraft to generate more lift in the aft section, and
thus tilts the fuselage forwards. In other words there is a 90 degree lag
in between the control input and the aircraft response; control is sent
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procession. If control was applied in-place, due to inertia the blade
would not increase angle of incidence in time. Retarding the 90 degree
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Tail rotor mechanics of Saint Vertigo, shown next to the CAD model
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plate which mechanically alters the pitch of all blades in tail rotor to

compensate for the main rotor torque. A finless rotor model was con-
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Figure 4.7  AIBO robots on the RoboCup soccer competition. Note the engineered
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Figure 4.10 Image courtesy of Celik et al. (200): EKF engine with unknown cor-
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Figure 4.17 The correlation matrix of an EKF is shown (middle) for a matured map,
next to a normalized version of it by SEIF sparsficator, which is now
sparse. This sparseness leads to a more efficient algorithm. Landmarks
that were encountered (i.e. fell into FOV at least once) have ellipses on
them, representing uncertainty. Since not all landmarks have yet been
encountered this map has not matured yet. The matrix on the right
is the covariance matrix, a.k.a. correlation matrix, for landmarks with
ellipses (indeed, this matrix is how those ellipses are calculated). This
matrix correlates all x coordinates with y coordinates. Darker elements
on this matrix represent stronger correlation, where lowest correlation
is 0 indicating statistical independence, and highest possible correlation
is 1. Typically it is implemented as a short integer matrix in which
256 correlation levels are possible. Note that this matrix will grow as
new landmarks are added to the map (i.e. map matures), and since it is
growing in two dimensions, more landmarks will put an exponential time
demand on the computer. It must be noted that most of the information
in this matrix is also redundant. . . . . . . .. ... 0oL 260
Figure 4.18 A sparse information matrix and landmarks whose information matrix
elements are non-zero after the statistical normalization. The triangle
represents the state observer, black landmarks are in the FOV and,
white landmarks arenot. . . . . .. ..o 261
Figure 4.19 This figure is an algorithm visualization for the subsection titled Step-
IV, Sparsification. . . . . . .. ..o 266
Figure 4.20 Img. courtesy of Michael Montemerlo, Stanford - SEIF engine state
observer path estimation implemented on the vehicle shown in fig. 4.16.
The landmarks are trees. Note that a scanning laser range finder was

used, which is a precision sensor with virtually negligible noise. . . . . 266
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Figure 4.21 Img. courtesy of Celik et al: this 2D map and its 3D path recovery uses

PF engine with unknown correspondences on a system developed by

the author. State observer altitude is recovered via an ultrasonic range

finder, and the landmarks are detected and measured using a single 60°

FOV camera. The algorithm runs at an average of 15 Hz. . . . . . .. 270
Figure 4.22 Howe Hall Second floor map, lowa State University. This 80 x 50 meter

map recovered on-the-fly via PF engine. The mapping algorithm was

implemented on the MAVRIC-Jr robot, also designed and built by the

author. A 2 mega-pixel rectilinear pincushion lens camera was used as

the range-bearing sensor. This test was run on a fixed-altitude state

observer (i.e. 1.2 meters from floor level), however it supports time

varying altitude. There was no IMU on this system - all angular rates

were handled optically. Scale provided is in meters. . . . . .. .. ... 270
Figure 4.23 Howe Hall Second floor map, lowa State University with state observer

path recovery. The path becomes an integral part of the PF engine and

is retained as long as the engine runs. Scale provided is in meters. . . . 271
Figure 4.24 Shape context representing a hallway, original figure being a letter H.

Each point p; on the shape tries to find a landmark such that an optimal

the matching with the landmark arrangement minimizes total disparity

from the original figure. That is to say if a map contains a hallway that

looks like this descriptor, such as in fig. 4.23 the QIE will find it and

highlight it. As mentioned earlier it is possible to construct any abstract

shape as a context descriptor fora QIE. . . . . .. .. ... ... ... 276
Figure 4.25 This figure shows a flat wall in an occupancy grid map at 1600x mag-

nification where individual pixels are visible. Darker colors indicate ob-

stacles. The dents in the wall are indeed sensor noise, which make the

wall look like it was riddled with bullets at this level of magnification,

which is not true. . . . . . . . . .o 277
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Figure 4.26 Minimum spanning tree interpretation of a map on a 2 meter wide
hallway. The algorithm consists of several stages. It accepts input in the
from of a matured map; a collection of landmarks. Top: Stage-1 involves
determining the spatial relationship of the landmarks, which are stored
in a matrix to be passed to the next stage. Bottom: Stage-2 goal is
to connect the graph based on the information provided in the previous
stage, starting at an arbitrary node and then connecting it to the closest
neighboring node. Topological sorting can be used (time complexity
being O(V + E)) which is a linear ordering of landmarks in which each
landmarks comes before all others to which it has outbound edges. The
weight of the connecting link is set as per the intermediary distance
of the neighbors. Stage-3 expects a connected graph as an input, as
per definition of spanning tree. This stage is essentially a spanning-
tree detection procedure such as the Kruskal’s Algorithm. Once the
minimum spanning tree is found (out of possibly many spanning trees),
walls can be extracted from it in terms of removing edges with very
high cost. What amount constitutes to high cost can be determined
statistically from the results obtained in Stage-1, as illustrated by the
red edges - which are marked for removal. . . . .. ... ... ..... 280

Figure 4.27 Hypothetical scatter plot of normalized landmark arrangement in an
oval room. A trend is evident, but landmarks are too populated for
spanning trees to reveal walls. The middle table shows the histogram. 281

Figure 4.28 Linear regression estimates two adjoining walls instead of a parabolic

Figure 4.29 Polynomial regression accurately recovers the true wall from the map. 285

Figure 4.30 There is more to life than simply increasing its speed. Gandhi. . . . . . 286

Figure 4.31 Benchmark map. . . . . . . . . . .. ... ... ... ... ... 286
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EKF Engine with unknown correspondences. All times are in millisec-
onds. Left: Computational demand. Right: State observer error with
99% bounds - from top down, X error, Y error, and ¢ error, respectively.287
EKF Engine with known correspondences. Note the similarity to fig.
4.32. All times are in milliseconds. Left: Computational demand. Right:
State observer error with 99% bounds - from top down, X error, Y error,
and ¢ error, respectively. . . . . ... Lo 288
UKF Engine with unknown correspondences and 5 sigma points. All

times are in milliseconds. Left: Computational demand. Right: State

observer error with 99% bounds - from top down, X error, Y error, and

¢ error, respectively. . . . .. .. L L 289
UKF Engine with known correspondences. All times are in milliseconds.
Left: Computational demand. Right: State observer error with 99%
bounds - from top down, X error, Y error, and ¢ error, respectively. 289
SEIF engine versus EKF engine with unknown correspondences. All
times (vertical) are in seconds, provided versus number of landmarks
(horizontal). The red plots indicate memory use in megabytes. . . . . . 290
CPU time behavior of EKF (red) versus PF engines, when new land-
marks are introduced with time. Every vertical division is 100 seconds
of runtime, where vertical scale is processor utilization in terms of per-
centage. Every 100 seconds, 25 new landmarks are introduced. . . . . . 290
Habit is the 6th sense that overrules the other 5. Arabian Proverb. 291
MAVRIC - The Mars Rover Competition Autonomous Vehicle version
1.0 developed at lowa State University under the supervision of the
author, which uses a SICK LMS200 LIDAR. device visible on the front.
On the right, in author’s hand, SICK LMS291, a longer range version. 294
The Devantech SRF08 Sonar with the beam-pattern. . . . . . . .. .. 295
Infrared Rangefinder. . . . . . . . .. .. . Lo oo

The VICON Bonita Near-IR Motion Capture Device. . . . . . . . . ..
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Figure 4.43 Unibrain Fire-i Firewire-400 industrial camera for industrial imaging

applications. It uses IEEE-1394a to capture color video signal. . . . . . 299
Figure 4.44 Omnidirectional capture. . . . . . . .. . ... ... ... ... 301
Figure 4.45 Image from a FLIR camera. There is no color in this picture; colormap

was artificially added lateron. . . . . . . .. ..o 0oL 303
Figure 4.46 The ADNS-2610 is smaller than a penny in size, making them suitable

for array deployment. . . . . . .. ..o Lo 304

Figure 4.47 The ADIS16365 IMU from Analog Devices. . . . ... ... ... ... 305

Figure 5.1 “If the map doesn’t agree with the ground the map is wrong.” Gordon
Livingston, Child Psychiatrist. . . . . .. ... ... .. ... ... ... 307

Figure 5.2  Binocular camera, courtesy of Rockwell Collins, provided for the ex-
periments in this thesis so a comparative study with that of monocular
systems could be developed. . . . . . .. ..o oo 309

Figure 5.3  Absolute range measurement using two non-identical, non-rectified cam-

eras, using the techniques described in this section. . . . . . . . . . .. 319
Figure 5.4  Flowchart of Particle Filter Autocalibration Algorithm. . . . . . . . .. 322
Figure 5.5  Particle Cloud with Zero Noise Injection. . . . . . . . .. ... ... .. 323
Figure 5.6  Particle Cloud with Medium Noise Injection. . . . . . . . ... ... .. 324
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Figure 5.8  Mean Squared Positioning Error . . . . . . .. ... ... ... ... .. 326

Figure 5.9  Spherical protection of an image plane surrounds in shrink-wrap fashion

a virtual sphere object. A seam and mapping singularities at the top

and bottom of the sphere where the bitmap edges meet at the spherical

poles will occur at 100% distortion. . . . . . . ... ... ... ... .. 333
Figure 5.10 Left to right, the Tessar, Biogon, and BH Sky compound lens designs,

with varying radial distortion characteristics. . . . .. .. .. .. ... 335
Figure 5.11 Top: Original & Tangential. Middle-1/2: Center & Edge / Interpo-

lated. Bottom: Video. . . . . . . . . . . ... 336
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Figure 5.12 False Feature Pairs. . . . . . .. .. .. .. . .. L. 338
Figure 5.13 The Liquidator, a Data Collector Robot custom built for camera stress

testing the author, with a laser aligned and optically encoded stereo

camera rig built on aircraft grade rigid aluminum. . . . . . .. ... .. 345
Figure 5.14 The hallway shape and translation vector used in Sections 5.3 and 5.4. 345
Figure 5.15 Top Left: Control Group. Top Right: Condensation. Middle Left:

Varifocals. Middlep Left: Pyro. Bottom Left: Fog. Bottom

Right: Radiation Artifacts (transient). . . . . . . ... ... ... ... 346
Figure 5.16 Directed Radio Energy Effects on Test Cameras . . . . . . . ... ... 350
Figure 5.17 Microscope images we have recorded of various imaging sensors used

in the n-Ocular Autocalibration and Monocular Autocalibration study.

A, B, D, E magnified 200x, and C 20x and scope-needle in A & E is

10 pm at the sharp tip. A & B belong to a very high quality CCD;

single glass element with no solder or glue involved, and it has a pixel

optic center true with die dimensions. The housing mechanically couples

with the lens assembly and machined to a precision of 0.1 pm (subpixel).

Whereas C, D and E are one poor quality device. Note that in C, pixels

are not properly aligned with the die, and non-uniform glue is seen in D

holding the sensor down — which results in sensor not perfectly parallel

to the lens (verifiable by the microscope). In E we observe microparticles

of dust and dirt that got stuck inside the glue holding the assembly

together during manufacture. Nonuniformities in the solder job are also

perceptible. . . . ..o 353
Figure 5.18 Pixel structure of Dell 1905FP under microscope. An individual pixel

is made up of three transistors representing color channels. All three

must be applied the same voltage for an aligned, square pixel to be

obtained (controllable from the video memory with a resolution of 24-

bits, yielding 16777216 fine intensity adjustments - 256 of which are

used in this experiment). . . . . . ... ..o Lo L. 355
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Figure 5.19 The 16 unique affine transformations used in monocular calibration, as
generated by the T6-Simulator, 8 x 6 x 29.99mm each (as it appears on a
1905FP, each square is precisely 102x102 pixels before a transformation
is applied). Maximum viewing angle does not exceed 30° which is well
within the limits of 1905FP. . . . . . . . .. .. ..o 359

Figure 5.20 The orientations from Fig. 5.19 with respect to the image plane, as
perceived by the camera. . . . . . . .. ..o 359

Figure 5.21 Monocular Miscalibration Experiment Mechanical Setup. It is designed
to isolate effects of environmental determinants on camera calibration
parameters. Structural elements used are made of rolled steel and very
rigid. . ... 360

Figure 5.22 Master-table of Monocular Miscalibration Experiment Measurements.
F(x,y) given in millimeters, P2 dimensionless, everything else in pixel. 362

Figure 5.23 SpyderLensCal is a popular commercially available raster calibration
wand with an integrated level and tripod mount. The OptiTrack Square
is another such tool based on infra-red or LED technology allowing pre-
cisely adjustable marker points. It is possible to utilize other improvised
objects as a calibration wand. The purpose remains the same; to ensure
accuracy and repeatability of camera measurements taken with same

camera body but different lenses. . . . . ... ... o0 365
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Figure 5.24 This experiment aims to demonstrate many side effects of changing
lenses while keeping the scenery and the camera constant. The red
vertical line is post-processed as a visual alignment aid. Subject is 39-
57 year old caucasian male without primary pathological evidence or
major trauma, code name Charlie. Mandible and cranium are placed
466 mm apart, and 329.5 mm behind each other. All pictures taken
in 5000K fluorescent ambiance with 21.06 cd/m? intensity. Note that
due to anamorphosis Charlie appears to be rotating as f increases, and
looking at the camera. Creepy if he did that. Also note the decline
in microcontrast, mild radial distortion, longitudinal chromatic aberra-
tion, and shift of optical center. Vingette is unnoticeable as the f/x was
used to compensate. The 1982 movie Poltergeist is notorious for using
such camera techniques. . . . . . .. . .. ... ... L. 370

Figure 5.25 When the F-Stop value is large, edges of the lens where aberrations
are more severe are given more emphasis for forming the image. Back-
grounds, as well as foregrounds, are parametrically blurred, thus isolat-
ing subjects. Not a desirable effect for an automatic feature detector,
but a useful property for monocular depth estimation. . . . ... ... 371

Figure 5.26 There are 32 well known compound lens designs. The Tessar (left,
middle) is classified as the standard high-quality, moderate-aperture,
normal-perspective lens. The Sonnar (right) is a wide aperture lens

with moderate distortions. . . . . . . . . . . .. ... ... ... .. .. 376
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Figure 5.27 n—view calibration of a monocular camera with a calibration wand (i.e.,
control volume of a house object) is typically performed with the as-
sumption the real world coordinates (z,y,z) of the 10 control points
are known. It is also assumed the control volume is a rigid formation
(186). An interesting property of this control volume is that control
points 1...5 are planar, which means the set of their perceived veloci-
ties on the image plane as the camera translates from C; to C> can be
described with a linear relationship, which implies they are on the same
depth plane from the camera. If the camera acceleration is known, we
can estimate this depth from the camera observation model. . . . . . . 378

Figure 5.28 Screenshots of our initial simulation development with n-view calibra-
tion support and correction for lens distortions. . . . .. ... ... .. 381

Figure 5.29 T6 Mark-1 Concept. . . . . . . . . . ... . 381

Figure 5.30 When interchanging lenses, do not touch the imaging sensor, or let it
come in contact with bright lights, or dust. Do not overtighten adapter
screws as they will strip the adapter. Mount the adapter snugly such
that it does not allow parasitic light seep in between the lens and the
SEIISOT. . v v v v v e e e e e e e e e e e e 382

Figure 5.31 Lenses should only be interchanged when the camera is not mounted
on the T6 Mark-I. Currently, the device is not designed to handle the
torque resulting from mounting a lens, it may get damaged. When
interchanging lenses ground yourself properly or perform this action on
an anti-static mat as shown here. . . . . . .. .. ... o0 383

Figure 5.32 When adding a camera module, first loosen the levers and adjust the
mount to the mounting holes on the board. T6 Mark-I will not accept a
circuit board without mounting holes. The holes should be connected to
the ground plane of the circuit. Do not overtighten the mount, tighten

only 1/8 of a turn after snug. . . . . ... ... ... ... ... 383
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The mount levers hinge open and close to accommodate different cam-
eras as small as 6 mm wide, and (97 mm wide x 60 mm tall maximum).

Loosen hinge pins, adjust hinges, mount camera, position it as desired,

and tighten hinge pins after the camera is mounted. . . . . . . . . . .. 384
T6 can integrate body accelerations and correlate the result with per-
ceived velocity. . . . . . .. 385
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wand. . ... L e e e e 385
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depth plane if the line crosses optic centers. The shadow of this curve
will appear to the image plane as a straight line, but the length of the
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Figure 5.44 All these four images have been taken with the same distorting Sonnar

lens. Compare the ceiling line in A and C; the same line that appears

straight in A because it passes very close to optic centers is very distorted

in C because it is near the edge. Radon Transform on image A that

detected this line would lose track of it in C. However if such distorting

lines are to be broken into many segments such as shown in B, they can

linearly approximate curves. In D, we see the same image in C, but

corrected for radial distortion with the help of Radon Snake in B. . . . 395
Figure 5.45 Top Left: Raw video from a Sonnar lens, looking at two pieces of paper

with a rectangle. Paper at the bottom is drawn with radial distortion in

real life and it is drawn using the distortion matrix of the Sonnar lens -

for this reason we see it twice as distorted than in real life. Paper at top

is a true quadrilateral. Top Left: A true quadrilateral. Bottom Left:

T6-Lenser corrects the true quadrilateral to true dimensions, and the

false quadrilateral to half of its distortion. Bottom Right: Corrected

quadrilateral. . . . . .. ..o 396
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If the camera is equipped with an infra-red projector, T6-Parallax can
filter infra-red reflections and map them to pixels on the depth plane.

This information is then used to augment the search for dominant planes.403
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Figure 5.68 Calibration time-series for average reprojection error in the experiment
in Fig. 5.63. Vertical values in pixels. Second-order regressions are
provided. The reprojection error is an indication of mismatch in between
the virtual world and the real one. If it is behaving like in this graph,
it is indicating a miscalibration trend of some sort, for instance it could

be due to increasing temperature. . . . . .. ..o 417

Figure 6.1 “The church says the earth is flat, but I know that it is round, for I
have seen the shadow on the moon, and I have more faith in a shadow
than in the church” Ferdinand Magellan, Navigator and Explorer, 1480-
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Figure 6.9  Gravity Observation Model properly associated with map. A logarith-

mic scale is provided below for better visibility. Temperature color scale

is used to represent field strength. . . . . . .. ... ... 437
Figure 6.10 Gravity Observation Model properly associated with map and sensor

noise. Height mapping represents gravitational forces sensed. While

state observer always sees all nearby (i.e. FOV) objects and measures

range-bearing to them, error arises from limitations of sensors or mea-

surement methods used (Specular reflections, multipath errors, electrical
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Figure 6.14 A typical input provided to Gerardus. This is the same map included in

Towa State University welcome package for visitors and prospective stu-

dents, a mix of floor-plan and BEV type map. In this configuration only

five real world structures are included in the real world; the Marston

Water Tower, Howe Hall, Sweeney Hall, Coover Hall, and Durham Cen-

ter. That is to say the state observer has a map of entire campus area
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better it gets. In this experiment each structure was circumnavigated
visited once, with the exception of water tower which was visited twice. 456

Example-3, second part of Gerardus during evolution of positioning error.457

Come to the edge he said. She said, I am afraid. Come to the edge he
said. She said I can’t; I might fall. Come to the edge he said. She said
no! it is too high. Come, to the edge, he said. Then she came. And he

pushed. And sheflew. . . . .. ... ... ... ... ... .. ..., . 460
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tions represent the control group (70°F), any spikes here are due to the
sensor noise of the camera. Calibrations 20-30 represent the hot group
(100°F) and 30-40 represent the cold group (40°F). Note that this is
not a time series; cameras were allowed sufficient time to stabilize their
temperatures before next calibrations were performed and this time is
not uniform due to physical nature of the device. At measurement 39

& 40 weather box was opened allowing room temperature air back inside.669

www.manharaa.com




Ixiii

Figure A.80 Temperature effects on optic center estimations. Vertical scale measures
the optic center in pixels (640 x 480 video, center theoretically occurring
at 320 x 240) and horizontal scale indicates calibrations. There are three
(3) groups represented in this graph. First 20 calibrations represent the
control group (70°F), any spikes here are due to the sensor noise of the
camera. Calibrations 20-30 represent the hot group (100°F) and 